If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+4y=0
a = 8; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·8·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*8}=\frac{-8}{16} =-1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*8}=\frac{0}{16} =0 $
| 0.8x-2.1=2.4x+1.4 | | -96=84+12s | | 8+4(-4r-2)=r | | 2/x=22/8 | | 20+8=14x+3 | | -31=-6d-7 | | -205=5(1+6b) | | r-8=2r-1 | | -3=5k+26 | | -22x+10=98 | | 90+x+10=6x+180 | | 10.25r+10.25r+61.5=42.5 | | 5=1-4n+6n | | 2(7n+2)-2=114 | | +8=3x10 | | 2/9y=4/5/6 | | -8x-5+3x=-3-4x | | x+3(x-3)=26 | | -8=-5x+x | | 3+2x/7+2-x/2=47/14 | | x+(x*0.2)=3 | | 10.5=e/4.3 | | 180x+45=2 | | 3x+5x=2+6 | | 19−3x=21+x | | 32÷a=8 | | -6x+12=25-9x | | -5-2k+3k=-6 | | 1.2+0.45x=0.85+0.5x | | 5x+8=12+3x | | 1.25=0.25/((0.25*6000000-x)/6000000) | | 3(x-5)+8x=-92 |